
Thread Criticality Support in On-Chip Networks

Yuho Jin, Ruisheng Wang, Woojin Choi, Timothy Mark Pinkston
University of Southern California

3740 McClintock Avenue
Los Angeles, California

{yujin, ruishenw, woojinch, tpink}@usc.edu

ABSTRACT

Multicore computing is becoming the mainstream approach
in computer system designs to effectively use growing tran-
sistor budgets for harnessing performance and energy-efficiency.
Increasing the parallelism with more cores requires care-
ful management, allocation, or partitioning of shared re-
sources to cope with varying resource demands from run-
ning threads. Predicting critical (or slowest) threads and
accelerating execution of those threads can reduce execu-
tion time of parallel applications by balancing the execution
of threads to synchronization points. The on-chip network
is an increasingly important component that services com-
munication of threads running on cores. As the communica-
tion latency of threads affects thread criticality, it should be
considered and optimized. In this work, we explore thread
criticality support in on-chip networks. We propose a flow
control technique that reserves router resources to acceler-
ate communication from critical threads. Furthermore, we
present thread criticality support in arbiter designs. Our
evaluation shows that implementing criticality awareness in
an on-chip interconnect design reduces execution time by
22% and increases system throughput by 18% for a 64-core
processor.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of
Systems

General Terms

Performance

Keywords

On-Chip Network, Multicore, Thread Criticality

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NoCArc ’10, December 4, 2010, Atlanta, Georgia, USA
Copyright 2010 ACM 978-1-4503-0397-2 ...$10.00.

1. INTRODUCTION
To leverage performance benefits from many available pro-

cessor cores on a chip, future applications will be highly par-
allelized through diverse programming techniques. Any load
imbalance on hardware resources across executing threads,
however, limits parallelism and causes performance loss and
energy inefficiency. Careful hardware resource management
optimized to different resource demands of threads is there-
fore needed to provide continuous performance improvement
in multicores.

The on-chip network (OCN) or Network-on-Chip (NoC)
is widely accepted as a solution for communication architec-
ture in large-scale integration of on-chip components. In a
multicore system, the OCN is the subsystem that provides
connectivity among processing units, storage elements, and
off-chip interfaces for efficiently transporting data in mini-
mal time, high volume, and least energy. The OCN is ex-
pected as a critical resource shared by other subsystems [6,
7, 11] and, hence, the design of the OCN significantly im-
pacts system throughput and application execution time.
The OCN is also popularly adopted as the backbone in build-
ing the shared memory architecture of multicore processors.

Previous studies [3, 5, 12] show that threads in paral-
lel applications executing on multicores have different stall
times when measuring arrival times at barriers, which are
meeting points for all threads. The main reason for dif-
ferent execution times of threads is that each thread has a
different demand on shared on-chip resources such as inter-
connect bandwidth, cache capacity, and memory controller
bandwidth. Different amounts of resource demands and us-
ages in each thread’s execution result in different execution
times of threads. As the slowest thread, i.e., critical thread,
determines execution time of parallel applications, predict-
ing thread criticality and accelerating the execution of crit-
ical threads can reduce overall application execution time.
In recent work, one of the sources for slowing down progress
of thread execution is accumulated cache miss penalty [3].
A thread criticality predictor based on cache miss penalty
is used for designing a load-balanced task scheduler and dy-
namic voltage frequency scaling.

In this work, we exploit thread criticality support in OCN
design by flow control and priority-based arbitration tech-
niques. As the OCN connects many L2 cache banks for
NUCA (Non-Uniform Cache Architecture) [9], network la-
tency contributes a large portion of L2 cache access latency.
Reducing network latency for communications from critical
threads can help to reduce their miss penalty, thereby accel-
erating execution of critical threads. To achieve this goal,

we propose a bypass flow control technique through a state-
preserving crossbar switch. The switch maintains state of
the default output port for each input port. By dedicating
one virtual channel (VC) in each physical channel to use
a preserved state, regular pipeline stages that packets go
through at each router can be avoided. Each router dynam-
ically finds the best preserving state that increases router
bypass chances for communications from critical packets.
We also explore priority-based arbiters in routers, where the
priority of packets conforms to the criticality of requesting
threads. This type of arbitration reduces stall time of pack-
ets from critical threads in the case of router resource con-
tention and, thus, leads to reduced cache miss latency for
critical threads.

Simulation results with a 64-core system show that appli-
cation execution time and system throughput are, on aver-
age, improved by 22% (up to 102%) and 18% (up to 73%),
respectively. Furthermore, thread criticality support in the
on-chip network achieves, on average, packet latency reduc-
tion of 14% and network power reduction of 10%.

The rest of this paper is organized as follows. Motiva-
tion for this work from characterization of thread critical-
ity is presented in Section 2. Thread criticality support
through bypass flow control and priority-based arbitration is
described in Section 3. The evaluation methodology is pre-
sented in Section 4, and simulation results of the proposed
techniques are presented in Section 5. Finally, related work
is noted in Section 6, and Section 7 concludes the paper.

2. CHARACTERIZATION OF THREAD EX-

ECUTION BEHAVIOR
Though applications are highly parallelized to spread com-

putation work across processor cores, execution can be im-
balanced among cores due to different demands on shared
resources such as cache capacity, on-chip interconnect band-
width, and off-chip bandwidth. One of the sources of load
imbalance which varies the execution speed of threads is
different amounts of cache misses and associated cache miss
penalty [3].

Table 1 lists characteristics of the slowest thread relative
to those of the fastest thread among all threads from the
PARSEC benchmark [4] running on an OCN-based 64-core
system. The slowest thread shows a significantly larger num-
ber of accesses to L2 cache and off-chip memory than the
fastest thread. The slowest thread injects a much larger
number of packets for cache operations and consumes more
on/off-chip bandwidth than the fastest thread. On average,
the slowest thread has 17.7 times larger miss penalty than
the fastest thread. This huge difference causes different ex-
ecution speeds of threads.

As the L2 cache is organized as a multi-bank design with
an on-chip interconnection network for technology scaling
problems [9], interconnect latency becomes dominant over
the access latency of cache storage. Indeed, in an 8 × 8
mesh-based multicore processor with 3-cycle hop latency, 6-
cycle access latency for a 4KB bank contributes 14% of the
total access time, but the round trip of a single-flit packet
from core to cache bank takes 86% (36 cycles) of the total
access time (42 cycles) for 12 hops under uniform traffic.
Thus, determining the criticality of a thread based on its
accumulated miss penalty should reflect the effect of com-
munication latency in the interconnect.

Table 1: Performance discrepancy across threads in

the 64-core system. Numbers are shown as a ratio

of slowest thread to fastest thread.
benchmark cycles L1 L2 L2 miss

misses hits misses penalty

blackscholes 4.0 4.8 4.7 6.8 3.9
bodytrack 14.7 8.6 10.0 4.9 16.3
canneal 98.1 70.2 90.0 35.9 104.6
facesim 10.4 9.6 10.8 7.0 10.1
ferret 6.7 11.6 9.3 16.3 6.6
fluidanimate 3.5 3.0 3.3 2.7 3.6
raytrace 23.1 11.6 16.2 6.1 24.6
streamcluster 4.7 4.9 5.9 2.8 5.5
swaptions 7.7 6.9 7.6 5.9 7.9
vips 5.9 6.4 7.0 3.6 5.9
x264 7.0 10.0 10.1 9.1 6.1

average 16.9 13.4 15.9 9.2 17.7

3. THREAD CRITICALITY SUPPORT IN

NETWORK ARCHITECTURE

3.1 Conventional Virtual Channel Flow Con-
trol

We first describe building blocks of conventional 2-stage
pipelined virtual-channel router architecture and present the
motivation of embedding bypass flow control in existing routers
to achieve low latency. Flits (flow control units) of a packet
are stored in a buffer divided into multiple VCs. The first
stage of a router consists of VC allocation (VA) and switch
allocation (SA). VA operation is performed for a head flit
to reserve a free output VC. SA does arbitration for switch
input and output ports. Furthermore, SA and VA can oc-
cur during the same cycle [15]. The second stage is switch
traversal (ST), where a flit traverses the corresponding input
port and output port allocated during the SA stage. Rout-
ing computation (RC) is performed at a previous upstream
router (e.g., lookahead routing) so that RC does not require
a separate stage. Finally, after a flit ejects from a router,
it traverses a link (LT) and enters into a neighboring down-
stream router. In this scenario, each flit experiences a total
3 cycles per hop, which is broken down to 2 cycles per router
and 1 cycle per link.

The crossbar switch is an important component for achiev-
ing high throughput in router designs. Multiple flits can tra-
verse the switch at the same time up to a maximum num-
ber of ports. When port contention occurs, arbitration per-
formed in the SA stage resolves port conflicts. Input port
arbitration resolves conflicts among packets from different
input VCs within the same input port, while output port
arbitration does so among packets from different input ports
but to the same output port.

Channels are statically divided into multiple VCs. Each
input VC is associated with one FIFO buffer implemented as
registers or memories to hold packets when packets cannot
be forwarded to the proper resource due to conflicts with
other packets. The use of VCs can be extended to avoid
deadlocks generated by cyclic channel dependence from adap-
tive routing algorithms or cache coherence protocols. The
VA stage allocates one output VC to a requesting packet in
one input VC.

!"#$%%&'$(&)#

")&**+$)#*,-('.#

/,-('.#$%%&'$(&)#

01# 234#

5# 6#

6# 5#

7# 7#

8# 8#

9&:;<=#

>&)(#*($(?#($+%?#

0@2# 5# 6# 7# 8#

5#

6#

7#

8#

/,-('.#:*$=?#'&:<(?)*#

!
"

0<A:(#5#

0<A:(#8#

2:(A:(#5#

2:(A:(#8#

!
"

!
"

!
"

!
"

(a) Router microarchitecture

!"#$%&'(%&)$

*+,-.$/$

*+,-.0

1-.,-.$/$ 1-.,-.0

*+,-.$/$

2)(3$,().$4.5.&$.567&$$

(b) State-preserving crossbar switch

Figure 1: Router design to bypass pipeline stages.

If a router reserves port and VC resources at the same
time of packet arrival, the first stage required for SA and
VA can be avoided for packet transportation. Likewise, if
a switch maintains an internal path for the requested input
port and output port for a packet, the second stage for ST
can be integrated with LT as a single cycle.

3.2 Bypass Flow Control
As mentioned previously, a VC wormhole router has mul-

tiple pipeline stages to achieve high throughput. However,
multiple stages increase per-hop latency by imposing one
cycle per stage, which increases communication latency pro-
portionally to hop count. This high-throughput feature can
be overridden by reserving router resources in accordance
with application characteristics.

Here we propose router bypass flow control, which re-
duces router latency to zero when a packet follows the pre-
allocated path. The basic idea is to reserve network re-
sources for proper switching patterns that accelerate com-
munication for critical threads. When a flit follows the re-
served input and output ports, it can directly enter into the
LT stage by skipping all stages of the router pipeline.

For this objective, a router preserves a state that defines
one preferred output port for each input port without con-
flicts. One VC is dedicated to each port for router bypassing.
We call this VC a bypass VC in contrast to a regular VC.
Through this mechanism, packets that use those input and
output ports in a preserving state can traverse a router with-
out switch allocation and VC allocation. We discuss how to
find a preserving state in Section 3.3.

Figure 1a shows the router design for bypass flow control.
The input buffer is split into one bypass VC and multiple
regular VCs. The bypass VC is associated with the latch.
When a router is not able to use ports in a preserving state, a
packet allocated to a bypass VC is stored in this buffer. The
port state table is updated periodically based on the best
switching pattern for critical threads. Switch usage counters
track switching patterns for packet traversal in a router.
Due to lookahead routing, an upstream router propagates
the packet’s route to a downstream router to increment the
corresponding counter for an input port and an output port.

Figure 1b shows our design of the state-preserving switch
crossbar used for bypass flow control. Connection to one
output port for each input port is controlled by a decoder.
The input signal to this decoder comes from the port state
table. Figure 1b shows a preserving state given by the port
state table in Figure 1a.

As an upstream router makes a bypassing decision for
a downstream router, a preserving state in a downstream
router is forwarded to each upstream router. Because route
information for a downstream router is available at an up-
stream router owing to lookahead routing, an upstream router
can prevent allocating a bypass VC for a packet that does
not match with a preserving state in a downstream router.
Moreover, the status of an output bypass VC at an upstream
router prevents the use of that output VC for another packet,
which is cost-free because this function already exists in a
conventional router design.

As a bypass VC and regular VCs share the same physical
channel, conflicts on the same port (i.e, the same physical
channel) can occur. In this case, packets on regular VCs al-
ways have higher priority than packets on bypass VC. This
means that though packets are assigned to skip pipeline
stages through a bypass VC at an upstream router, pack-
ets can experience regular pipeline stages at a downstream
router. Similarly as with cut-through flow control, when
one flit in the same packet cannot bypass a router, all the
following flits also cannot bypass a router. This guarantees
correct transport of all flits of the same packet for VC flow
control and obviates extra hardware of reordering flits at
destinations. A packet cannot bypass a router through the
bypass VC if switch allocation occurs during the previous
cycle. This means that there are waiting packets for regu-
lar VCs or switch ports different from ones in a preserving
state. Conservatively using shared physical channels for a
bypass VC provides no starvation for regular VCs. In ad-
dition, router bypassing is not allowed if an output VC has
no credits for the input buffer at a downstream router. This
condition is necessary, because a packet that is transported
through a bypass VC can be stored in the buffer (i.e., trans-
ported through router pipelines). Compared to EVC flow
control [10], this mechanism does not have overheads for

credit management to check buffer availability in routers far
from the current router.

3.3 Switch Usage Counter
One important decision in our router design is how to

find a preserving state that a crossbar will maintain. Find-
ing states to reduce communication latency of packets from
as many critical threads as possible will reduce miss penalty
significantly. Here, we assume that a packet has a critical-
ity indicator encoded as priority in the header. When a
high-priority packet traverses a router, one counter for the
corresponding input and output ports increases. When a
change of the preserving state is triggered, all the values
stored in counters are scanned in increasing order to find
the best output port for each input port. A port state ta-
ble is updated with the found mapping result between input
and output ports to provide a preserving state for the next
interval. Counters should be selectively updated only for
critical threads to reduce their execution time as much as
possible.

3.4 Priority-Based Arbiter
When a packet experiences regular pipeline stages, it re-

quires VC arbitration, switch arbitration, or speculative switch
arbitration. Arbiter design provides another opportunity to
deliver packets from critical threads with high priorities over
those from non-critical threads. Thus packets from criti-
cal threads experience less stall time from arbitration op-
erations. Packet priority is assigned consistently using the
thread criticality indicator, meaning that threads causing
large miss penalty have high priorities. To provide a fair
chance to all waiting packets, we increase the priority by
one for packets that are not chosen for arbitration outcomes.
This increment of priority is confined in each arbitration unit
and does not modify a packet’s original priority of thread
criticality.

3.5 Thread Criticality Predictor
We modify a previously proposed thread criticality pre-

dictor [3], assuming a monolithic L2 cache. It accounts for
number of per-core L2 hits and L2 misses to estimate accu-
mulated L1 miss penalty during a fixed interval. However,
as a L2 cache consists of multiple banks connected by a mesh
network, a distribution of cache blocks for each thread sig-
nificantly affects miss penalty. Therefore, in our design, we
consider a round-trip distance from each core to each bank
for L2 hits or to each memory controller for L2 misses for
accurate estimation. To estimate the sum of miss penalties
for L2 hits, each bank of L2 cache has per-core hit counters.
Per-core miss counters are not enough to estimate the sum
of L2 miss penalties for L2 misses, because different network
latency between L2 cache banks and memory controllers af-
fects L2 miss latency. To precisely estimate this latency
occurring only in L2 misses, per-core miss counters are fur-
ther extended to per-core and per-memory-controller miss
counters. As those distances are determined at design time,
a preset value regarding network distance for each counter
is multiplied to the counter value. In our 64-core config-
uration, each L2 bank has 64 × 1 hit counters and 64 × 4
miss counters for 4 memory controllers. Therefore, a total
of 64×64×5 counters are required in a 64-core system with
64 L2 banks. At the completion of each interval, all those
values are forwarded through control packets to a node lo-

cated in the center of the network for criticality prediction.
Moreover, a central node needs to forward prediction results
to all routers. To prevent congestion on a central node, we
assume global coordination is achieved by a sequential visit
of all nodes through a single control packet.

4. METHODOLOGY

Table 2: Parameters used in 64-core system.

Private L1 I&D caches 32KB, 4-way, 1 cycle, LRU
Shared L2 cache 16MB, 16-way, 6 cycles, LRU
Memory controllers 4
Cache block size 64B
Memory latency 256 cycles
Network topology 8 × 8 mesh
Link bandwidth 16B/cycle
Virtual channel 4 per protocol class, 3 classes
Input buffer 4-flit depth

Our simulation infrastructure is based on SIMICS [13] full
system simulator with GEMS [14] and GARNET [1]. SIM-
ICS [13] is configured to model a 64-core chip running Solaris
10 with UltraSPARCIII+. Each core has a 3GHz in-order
execution unit, 32KB instruction/data L1 caches, and a slice
of shared 256KB L2 cache totaling 16MB capacity. A mesh
network connects 64 homogeneously structured nodes. Co-
herence is managed by MOESI protocol. The chip has four
memory controllers to service off-chip traffic for misses in L2
cache and each controller is connected to a different router in
a network. GARNET models the 4-stage (RC, VA, SA, and
ST) pipelined wormhole router, which amounts to no-load
latency of 4 cycles for head flits and 2 cycles for middle/tail
flits. We have modified this original 4-stage router model to
the 2-stage router model by implementing speculative switch
allocation and lookahead routing. Therefore, the baseline
router can transport all types of flits with 2 cycles. Link is
set as 16B width, 2.2mm length, and 1-cycle traversal delay.
A dimension-ordered routing algorithm determines packet
routes in a mesh network. Orion [16] is used to measure
impacts of different designs on network power consumption.
Energy consumption of network components modeled with
default 100nm technology in Orion is scaled to 32nm tech-
nology. The main system parameters are listed in Table 2.
In this work, we run a suite of PARSEC benchmarks in-
cluding emerging multithreaded applications in recognition,
mining, and synthesis (RMS) compiled with pthread pro-
gramming model.

5. PERFORMANCE EVALUATION
For thread criticality support in an on-chip network, thread

criticality is encoded as priority in the packet header. In this
work, 64 priority levels are defined to differentiate threads
running on each core. Each level can be encoded as 6 bits
(5% of total flit data) included in the header. To adapt run-
time variation of thread criticality, switch usage counters
are incremented for packets from only the top four criti-
cal threads (6.25% of all threads). We use 100K cycles as
the interval size of collecting those counter values for thread
criticality prediction.

We compare three designs for performance evaluation.
The baseline has no support for thread criticality. The sec-

ond design uses bypass flow control and round-robin arbi-
tration routers. The third design uses bypass flow control
and priority-based arbitration routers.

!"#$%

#$%

"#$%

&#$%

'#$%

(#$%

)##$%

)"#$%

!
"
!
#$
%
&
'
(%
)
!
(*
)
+
,&
-
!
)
!
'
.(*+,%

+,-./%

Figure 2: Application Execution Time.

Figure 2 shows the percentage of execution time improve-
ment over the baseline design in each benchmark. Bypass
flow control and priority-based arbitration for thread crit-
icality support are indicated by BFC and ARB, respec-
tively. Overall, on-chip network support for thread critical-
ity improves execution time by 22% on average (up to 102%),
as critical threads can run faster due to the reduced commu-
nication delay. The bypass flow control technique solely con-
tributes 63% of execution time improvement. Small perfor-
mance improvement from priority-based arbitration is due
to low network load, leading to little contention in resource
arbitration.

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

!"
#
$%
&
'
()
*
+
&
+
,
-$

,-.#

,-./01,#

Figure 3: System Throughput.

Figure 3 shows the percentage of system throughput im-
provement measured by average of instructions per cycle
(IPC) for each core. If critical threads run faster, IPCs on
cores executing critical threads can increase. Speeding up
the execution of critical threads enables faster transactions
on cache blocks shared with other non-critical threads, which
also improves IPCs of cores executing non-critical threads.
This type of benefit would be more pronounced when par-
allel applications exhibit a high degree of cooperation with
more communications across threads. Criticality support
with our two techniques improves 18% of system through-
put on average, which results in better utilization of system
resources.

We further analyze the impact of thread criticality sup-
port on network performance. Figure 4 shows average packet
latency representing the difference between injection and

!"#

$$"#

$%"#

$&"#

!
"
#$
%
&'
("
&%
)
#*
'+
%
,
-
#.
/
)
'

'()#

'()*+,'#

Figure 4: Packet Latency.

ejection times of packets. Bypass flow control obviously
helps to reduce packet latency by 14% on average compared
to the baseline design. Our objective is to reduce packet
latency in miss penalty for only critical threads that deter-
mine application execution time, which can increase packet
latency for non-critical threads. As packet latency is re-
duced by bypass flow control, the network can service more
packets from more cache transactions for the same amount of
time. Hence, bypass flow control improves network through-
put (measured by number of packets per cycle) by 10% on
average.

!"#

$"#

%!"#

%$"#

&!"#

&$"#

'!"#

'$"#

!
"
#$
%
&'
%
(
%
)*
+
')
%
,
-
#.
/
(
'

()*#

()*+,-(#

Figure 5: Packet Energy Consumption.

Another benefit from bypass flow control is power sav-
ings as buffer read/write and arbitration operations are re-
duced with router bypassing. In particular, as VC buffers
are main power/area consumers in on-chip networks, reduc-
ing circuit activities in buffers can save a large portion of
network power. We report average energy reduction for
delivering a packet in Figure 5. Bypass flow control with
round-robin arbitration saves packet energy by 4% on av-
erage compared to the baseline, while bypass flow control
with priority-based arbitration saves energy by 9%. With
respect to power consumption, we observe that some bench-
marks such as bodytrack, fluidanimate, raytrace, and swap-

tions consume more network power than the baseline design.
Examination of those benchmarks shows that fast execution
of critical threads increases coherence messages to handle
increased transitions of cache blocks per unit of time.

6. RELATED WORK
There has been prior work that focuses on exploring ser-

vice management in on-chip networks [6, 7, 11]. In [11], a

frame amortizing usage of bandwidth in a large time win-
dow is used to effectively share on-chip network bandwidth.
In [6], stall time criticality of packets is used to improve
system throughput through priority-based arbitration across
single-threaded applications. All three studies work well for
shared bandwidth management under high contention, but
have nominal improvement under low contention as provid-
ing differentiated service to each application or flow is diffi-
cult.

Flow control is explored to shorten long latency incurred
by packet switching in conventional router pipelines [2, 8,
10]. In [10], the idea of express virtual channels is proposed
to allow packets to bypass intermediate routers in the same
dimension of a mesh network. In [8], hybrid circuit switch-
ing is implemented to improve performance of cache coher-
ence protocols by skipping router pipeline stages through an
established circuit as shared cache blocks are frequently ac-
cessed. In [2], a pseudo-circuit is proposed to find a more
highly utilized bypass path within a router, while an original
circuit sets up an end-to-end path. Although these studies
lead to higher network performance, improving application
execution time without exploring its thread behavior can be
limited.

7. CONCLUSION
As on-chip networks become ubiquitous as the communi-

cation substrate of multicore systems, it is crucial for man-
agement and allocation of network resources to be able to
flexibly adapt to the behavior of application execution. In a
parallel application domain where threads have different ex-
ecution speeds, the slowest executing thread determines ex-
ecution time of the application. Therefore, accelerating the
execution of critical threads by preserving access to required
resources improves application performance. In this work,
we explore thread criticality support in an on-chip network
design to reduce the communication cost of critical threads.
To achieve this objective, we use two techniques. Bypass
flow control allows router pipeline stages to be skipped by
using a state-preserving crossbar switch that maintains fre-
quent routes between input and output ports for packets
produced by critical threads. Priority-based arbitration for
VCs and switches enables reduction of stall time for those
packets under resource contention. Results using a simu-
lated 64-core system show that criticality support in an on-
chip network improves application execution time, system
throughput, and network energy savings.

8. ACKNOWLEDGMENTS
The research described in this paper was supported, in

part, by the National Science Foundation (NSF) grants CCF-
0541417, CCF-0946388, and a CIFellows Postdoc Award.

9. REFERENCES
[1] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha.

GARNET: A detailed on-chip network model inside a
full-system simulator. In Proceedings of ISPASS, pages
33–42, 2009.

[2] M. Ahn and E. J. Kim. Pseudo-Circuit: Accelerating
Communication for On-Chip Interconnection
Networks. In Proceedings of MICRO, 2010.

[3] A. Bhattacharjee and M. Martonosi. Thread
Criticality Predictors for Dynamic Performance,

Power, and Resource Management in Chip
Multiprocessors. In Proceedings of ISCA, pages
290–301, 2009.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
PARSEC Benchmark Suite: Characterization and
Architectural Implications. In Proceedings of PACT,
October 2008.

[5] Q. Cai, J. González, R. Rakvic, G. Magklis,
P. Chaparro, and A. González. Meeting points: using
thread criticality to adapt multicore hardware to
parallel regions. In Proceedings of PACT, pages
240–249, 2008.

[6] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das.
Application-aware prioritization mechanisms for
on-chip networks. In Proceedings of MICRO, pages
280–291, 2009.

[7] B. Grot, S. W. Keckler, and O. Mutlu. Preemptive
virtual clock: a flexible, efficient, and cost-effective
QOS scheme for networks-on-chip. In Proceedings of

MICRO, pages 268–279, 2009.

[8] N. D. E. Jerger, L.-S. Peh, and M. H. Lipasti.
Circuit-switched coherence. In Proceedings of NOCS,
pages 193–202, 2008.

[9] C. Kim, D. Burger, and S. W. Keckler. An Adaptive,
Non-Uniform Cache Structure for Wire-Delay
Dominated On-Chip Caches. In Proceedings of

ASPLOS, pages 211–222, 2002.

[10] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha.
Express Virtual Channels: Towards the Ideal
Interconnection Fabric. In Proceedings of ISCA, pages
150–161, 2007.

[11] J. W. Lee, M. C. Ng, and K. Asanovic.
Globally-Synchronized Frames for Guaranteed
Quality-of-Service in On-Chip Networks. In
Proceedings of ISCA, pages 89–100, 2008.

[12] J. Li, J. F. Mart́ınez, and M. C. Huang. The Thrifty
Barrier: Energy-Aware Synchronization in
Shared-Memory Multiprocessors. In Proceedings of

HPCA, pages 14–23, 2004.

[13] P. S. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. H̊allberg, J. Högberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A Full System
Simulation Platform. IEEE Computer, 35(2):50–58,
2002.

[14] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
Hill, and D. A. Wood. Multifacet’s General
Execution-driven Multiprocessor Simulator (GEMS)
Toolset. Computer Architecture News, 33(4):92–99,
2005.

[15] L.-S. Peh and W. J. Dally. A Delay Model and
Speculative Architecture for Pipelined Routers. In
Proceedings of HPCA, pages 255–266, 2001.

[16] H. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: a
Power-Performance Simulator for Interconnection
Networks. In Proceedings of MICRO, pages 294–305,
2002.

