J. Parallel Distrib. Comput. 72 (2012) 1412-1422

Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Efficient implementation of globally-aware network flow control
Lizhong Chen*, Ruisheng Wang, Timothy M. Pinkston

Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA

ARTICLE INFO ABSTRACT

Article history:

Received 16 July 2011

Received in revised form

30 January 2012

Accepted 2 February 2012
Available online 10 February 2012

Network flow control mechanisms that are aware of global conditions potentially can achieve higher
performance than flow control mechanisms that are only locally aware. Owing to high implementation
overhead, globally-aware flow control mechanisms in their purest form are seldom adopted in practice,
leading to less efficient simplified implementations. In this paper, we propose an efficient implementation
of a globally-aware flow control mechanism, called Critical Bubble Scheme, for k-ary n-cube networks.
This scheme achieves near-optimal performance with the same minimal buffer requirements of globally-
aware flow control and can be further generalized to implement the general class of buffer occupancy-
based network flow control. We prove deadlock freedom of the proposed scheme and exploit its use in
handling protocol-induced deadlocks in on-chip environments. We evaluate the proposed scheme using
both synthetic traffic and real application loads. Simulation results show that the proposed scheme can
reduce the buffer access component of packet latency by as much as 62% over locally-aware flow control,
and improve average packet latency by 18.8% and overall execution time by 7.2% in full system simulation.

Keywords:

Interconnection network

Bubble Flow Control

Adaptive routing

Protocol-induced or message-dependent
deadlock avoidance

Globally-aware network flow control

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

With parallel processing pervading the entire computing
landscape - from server clouds built from chip multi-processors
to embedded compute nodes built from systems-on-chip - the
interconnection network plays an increasingly important role by
providing efficient communication support among various system
components. Along with routing, network flow control aims to
maximize resource utilization while preventing oversubscription
and deadlock in resource usage. It is, thus, critical in achieving high
network and overall system performance.

Flow control mechanisms can be classified as being either
locally-aware or globally-aware. Locally-aware network flow
control mechanisms allocate network resources (e.g., channel
buffers) to packets based solely on information local to router
nodes, e.g., channel buffer occupancy of neighboring nodes.
In contrast, globally-aware network flow control mechanisms
make resource allocation decisions based on global network
conditions that include local status information, e.g., channel
buffer occupancy of neighboring router nodes as well as remote
nodes. Recent work has shown that globally-aware flow control
mechanisms can reap benefits in reducing network congestion and
improve performance in terms of both latency and throughput [9,
14,21]. However, such mechanisms typically rely on an omniscient
global controller capable of collecting and distributing remote

* Correspondence to: University of Southern California, 3740 McClintock Ave.,
EEB-224, Los Angeles, CA 90089, USA.
E-mail addresses: lizhongc@usc.edu (L. Chen), ruishenw@usc.edu (R. Wang),
tpink@usc.edu (T.M. Pinkston).

0743-7315/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j,jpdc.2012.02.004

information nearly instantaneously everywhere at all times,
which incurs substantial cost overhead or relies on simplified
implementations which, oftentimes, are much less efficient.

A representative globally-aware flow control mechanism is
Bubble Flow Control (BFC) which, in theory, requires a global
controller to fully realize global awareness [18]. As implementing
such a controller is complex, simplified versions of BFC that provide
only local awareness have been implemented, e.g., in IBM Blue
Gene/L [1], losing the potential benefits of true global awareness.
BFC has been applied to off-chip environments to combat routing-
induced deadlocks but can also be applied to the on-chip domain to
avoid protocol-induced (i.e., message-dependent [19]) deadlocks
caused by multiple message classes in cache coherence protocols
used for shared memory chip multiprocessors. However, current
simplified implementations of BFC would require many buffer
resources to be devoted to safeguard against protocol-induced
deadlocks which may occur rarely [17,19]. Hence, both off-
chip and on-chip networks stand to gain from a more efficient
implementation of BFC to achieve the benefits of globally-aware
flow control while avoiding the drawbacks from added complexity
of a global controller.

In this paper, we address the looming issue of realizing globally-
aware flow control mechanisms by proposing the Critical Bubble
Scheme, an efficient implementation of BFC applied to k-ary n-
cube networks for the general class of buffer occupancy-based
network flow control techniques. The basic idea behind the
scheme is to mark and track as “critical” a certain number of
free packet-sized buffers or bubbles (minimally, one per network
dimension) and appropriately use only those critical bubbles
to restrict packet injection for avoiding deadlock. This achieves

http://dx.doi.org/10.1016/j.jpdc.2012.02.004
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:lizhongc@usc.edu
mailto:ruishenw@usc.edu
mailto:tpink@usc.edu
http://dx.doi.org/10.1016/j.jpdc.2012.02.004

L. Chen et al. /]. Parallel Distrib. Comput. 72 (2012) 1412-1422 1413

nearly the same effect as would be provided by an omniscient
global controller needed to implement theoretically-optimal BFC
while not incurring the complexity of a global controller or
the performance inefficiencies of the simplified implementation.
We investigate the proposed Critical Bubble Scheme in both
its minimized form (i.e., only one critical bubble per network
dimension) and its generalized form (i.e., x critical bubbles per
dimension).

The main contributions and organization of this paper are
the following. The potential advantages and existing challenges
of implementing globally-aware flow control mechanisms are
discussed in Section 2 relative to locally-aware flow control. The
Critical Bubble Scheme is proposed in Section 3 and shown as
a way to implement near-theoretically-optimal BFC, which can
reduce the minimum number of channel buffers needed to avoid
deadlock by 50% compared to Localized BFC. This benefit of
buffer reduction is also exploited by efficiently handling protocol-
induced deadlock. Section 3.4 provides theoretical proof sketches
of deadlock freedom of the proposed Critical Bubble Scheme for
virtual cut-through switched k-ary n-cube networks. Modifications
to router architecture for implementing the Critical Bubble Scheme
are described in Section 4, and the proposed scheme is evaluated
using both synthetic traffic and real application loads in Section 5.
Simulation results show that the Critical Bubble Scheme can reduce
the buffer access component of packet latency by as much as 62%
over locally-aware flow control, and can achieve 18.8% reduction
in average packet latency and 7.2% reduction in overall execution
time under full system simulation. The scalability of the Critical
Bubble Scheme and its generalization of using multiple critical
bubbles to efficiently realize a large class of buffer occupancy-
based globally-aware flow control mechanisms is discussed in
Section 6. Finally, related work on globally-aware flow control and
protocol-induced deadlock are summarized in Sections 7 and 8
concludes the paper.

2. Need for efficient implementation of globally-aware flow
control

2.1. 1 pros and cons of globally-aware flow control

Fundamental metrics used to evaluate interconnection net-
works (such as throughput, latency, power and cost) are global
measures as overall performance rarely is determined by the status
of a given link or router but, rather, on communication paths com-
prised of multiple links and routers across the network. If resource
allocation decisions are made locally at nodes, the effect should be
optimized over the entire network. Given this, globally-aware flow
control in which nodes take into consideration conditions from
across the network in making decisions locally is preferred over
locally-aware flow control where only local information is taken
into account.

Globally-aware flow control has at least three advantages. First,
as the status across the network typically is non-uniform, a locally-
aware node may have quite different local status information than
remote nodes. Hence, an allocation decision based solely on this
information may not only be suboptimal but can even be counter-
optimal. Second, as mentioned in [21], global awareness allows
changes in network conditions to be detected earlier than the use
of local information only as the latter suffers propagation delay of
backpressure to the local node. Third, globally-aware flow control
enables finer-granularity in optimally tuning network resources
and restrictions on the use of those resources. For example, local-
only flow control may unnecessarily place restrictions on the use
of some set of local resources (e.g., channel buffers), thus requiring
more resources as every node must enforce the same restrictions.

With globally-aware flow control, local restrictions can be eased
by enforcing restrictions amortized over a larger set of resources.

Along with these advantages, unfortunately, are some chal-
lenges in efficiently implementing globally-aware flow control.
Key global information about network conditions must be gathered
and acted upon by an omniscient global controller. This requires
either prohibitively high overhead cost to implement or simplified
implementations which can be quite inefficient. The following dis-
cusses a representative example.

2.2. Bubble Flow Control

Bubble Flow Control proposed in [18] is a well-known globally-
aware flow control mechanism that reduces to a locally-aware flow
control mechanism in simplified form. In what follows, we use the
term Theoretically-optimal Bubble Flow Control (Theoretical BFC)
to refer to the theoretically-optimal instantiation of Bubble Flow
Control and use the term Localized Bubble Flow Control (Localized
BFC) to refer to the simplified implementation in which only local
information is used to control bubble flow. This is the scheme
adopted in BFC implementations to-date [1]. Also in what follows,
a bubble denotes a free packet-sized buffer.

(1) Theoretical BFC: Bubble Flow Control is applicable to k-
ary n-cube networks (e.g., 2D tori). Fully globally-aware in its
theoretically-optimal form, it applies virtual cut-through flow
control in a way to avoid deadlock while requiring nominal buffer
resources across the network. Dimension-order routing (DOR) in
tori eliminates cyclic routing dependences that can occur across
various network dimensions. It does not prevent, however, cyclic
dependences and routing-induced deadlock that can occur within
dimensions caused by torus wraparound links. A classic solution
to this deadlock problem is to use a dateline technique in which
two virtual channels (high and low) are associated with each
physical channel [7]. When packets transported on low channels
cross the dateline, they switch to high channels thus breaking
cyclic dependency within network dimensions. A drawback of this
approach, however, is the requirement of two virtual channels per
link with their corresponding buffer resources.

Theoretical BFC reduces buffer requirements to only one virtual
channel by imposing two simple rules on injection and forwarding
of packets across dimensions. The idea is to prevent packets from
using the potentially last free buffer of a dimensional ring [18]. The
two rules are the following.

(i) Forwarding of a packet within a dimension is allowed if the
receiving channel buffer has at least one packet-sized free
buffer, i.e., a bubble.

(ii) Forwarding of a packet from one dimension to another
(including injection of a new packet into a dimension) is
allowed if the receiving channel buffer has a packet-sized free
buffer and there is at least one additional free buffer located
anywhere among the channel buffers of any router within that
directional ring.

The first rule is the same as virtual cut-through flow control.
In order to understand the second rule, Fig. 1 shows a simple
illustration. Let us say this ring is a unidirectional ring of an
arbitrary dimension in a k-ary n-cube network. Shaded rectangles
indicate full buffers whereas non-shaded ones indicate empty
buffers. Packet P wishes to enter into this dimension either from
a different dimension or from an injection point (i.e., attached
processor node). This access will be allowed only if the receiving
channel buffer in Router I has a packet-sized free buffer, and there
is an additional free buffer located anywhere (for example Router
J)in the same direction. In this way, after accepting packet P, there
is always at least one free buffer in the ring, which guarantees that
at least one packet is able to make progress. This free buffer acts as

1414 L. Chen et al. / . Parallel Distrib. Comput. 72 (2012) 1412-1422

Router Router Router Router|

P

Router Router)

Fig. 1. Theoretical BFC requires global buffer information in the ring to avoid

deadlock.
Router Router
Aﬁ[ﬂﬂ |

Fig. 2. Simultaneous injection in Theoretical BFC requires global coordination.

Router Router

Fig. 3. Localized BFC decisions are not optimal across the network.

Router B

Router Router A Router

Router Router A Router Router B

a bubble and ensures deadlock freedom. A detailed mathematical
proof can be found in the original paper [18].

(2) Difficulties with Theoretical BFC: The allocation of buffer
resources in Theoretical BFC requires buffer utilization information
of other nodes in the directional rings of the network. A major
difficulty in implementing Theoretical BFC is the need for a global
controller. The global controller must gather and distribute global
information about free buffer status within each network ring
so that every node has sufficient global knowledge to decide on
the allocation of buffers to requesting packets. Even with perfect
global knowledge of free buffer status provided by the global
controller, Theoretical BFC requires additional global control to
handle multiple simultaneous injection requests in a deadlock-
free manner. Consider the scenario in Fig. 2 in which, in the same
cycle, two packets request to inject into the same directional ring
containing only two free buffers. At most only one of the injections
should be granted to avoid a potential deadlock configuration.
However, according to the rules in [18] defining Theoretical
BFC, each of the two routers will allow the injections based on
global knowledge of the existence of two free buffers in the
dimensional ring. Hence, besides enforcing the rules as defined
in [18], a global controller must also determine which one of
the multiple simultaneous injection requests should be granted
to avoid deadlock and eliminate uncertainty. The above major
difficulties hinder the adoption of Theoretical BFC in practice.

(3) Localized BFC and its shortcomings: To obviate the need for
a global controller, a Localized BFC scheme was proposed and
adopted to simplify BFC implementation [1,18]. Instead of checking
for the existence of two free buffers anywhere along the directional
ring as in Theoretical BFC, Localized BFC checks only that there
are two free buffers in the channel buffer of the receiving router.
For example, if the channel buffer of Router I in Fig. 1 has two
free buffers, access will be granted to packet P. This simplification
essentially reduces the globally-aware Theoretical BFC technique
to a locally-aware technique as, now, all decisions are made based
solely on local information as opposed to global information across
the network’s dimensional ring.

Localized BFC has three shortcomings that can degrade
performance. First, by requiring two free buffers in the local
channel buffer for packets to enter a new dimension, Localized
BFC increases the buffer access delay component of packet latency.
As shown in Fig. 3, both packets satisfy the Theoretical BFC
rules and should be granted access given that overall buffer
occupancy within the dimension is far from saturation. However,

Router Router Router Router

Router Router

Fig.4. Localized BFC requires more free buffers than that are needed by Theoretical
BFC.

both accesses are denied with Localized BFC as only one free buffer
exists in the corresponding local channels. Hence, the packets
suffer a longer buffer access delay than incurred by Theoretical BFC.

Second, Localized BFC does not use channel buffers to their
theoretically optimal level as more than the minimum number
of required buffers remain unused within each dimension. Fig. 4
depicts a representative scenario. Five packets wish to enter the
directional ring simultaneously. According to Theoretical BFC, the
minimum number of free buffers needed is six: one for each of the
five packets plus one bubble to avoid deadlock. However, Localized
BFC requires there to be at least ten free buffers: two free buffers
for each packet. Thus, in this case, Localized BFC requires 66%
more free buffers to guarantee deadlock freedom, which is highly
inefficient.

Third, in this simplified implementation of BFC, the minimum
number of buffers needed to avoid deadlock in each channel
buffer of routers now becomes two instead of one as required by
Theoretical BFC. This introduces another inefficiency, particularly
when channels have shallow/minimum buffers. For example, given
tight buffer budgets, some on-chip network or network-on-chip
(NoC) designs may allow for only one packet-sized buffer per
channel, which precludes the use of Localized BFC. Since NoC-
based systems are gaining increasing importance in recent years,
the following subsection discusses this issue in more detail.

The increased buffer access delay, lower buffer utilization,
and increased minimum buffer size of Localized BFC leads to
performance degradation and higher cost of the network, as shown
experimentally later in Section 5.

2.3. Inefficiency of Localized BFC for handling protocol-induced
deadlock

So far, the deadlock that we have discussed is routing-induced
deadlock. However, there is also another type of deadlock—
protocol-induced or message-dependent deadlock that can occur in
computer systems such as shared-memory chip multiprocessors
(CMPs). While its formal model and detailed description are
provided in [19,22], essentially, message-dependent deadlock is
caused by multiple dependent message classes in cache coherence
protocols. For example, reply messages can only be generated by
nodes receiving request messages. In other words, reply messages
depend on request messages. This inter-message dependency
creates additional arcs in the channel dependency graph, and if it
happens to complete a cycle, then deadlock may occur.

To avoid message-dependent deadlock, separate logical net-
works (e.g., implemented as virtual channels) are often employed
for separating different message classes [7]. Since the actual fre-
quency of deadlock typically is very low [17,19], those logical net-
works acting as escape channels should be designed to use as few
resources as possible so that the remaining buffer resources can be
shared among all message classes as adaptive channels, thus max-
imizing resource utilization [12].

However, when applying Localized BFC to handle message-
dependent deadlock in torus networks, resource utilization is
far from optimal. For example, in the MOESI directory cache
protocol [13], different message types can be classified into
three dependent message classes which require at least three
independent layers of virtual channels in Localized BFC to serve as

L. Chen et al. /]. Parallel Distrib. Comput. 72 (2012) 1412-1422 1415

ettt o,
S
L

E

ALY

A
ST

Router

Router Router Router Router
i
[/

Fig. 5. The Critical Bubble Scheme avoids deadlock without requiring explicit
global coordination.

RouterA Router B Router A Router B

54321, Ty

fif—fm— - [

Fig. 6. Transfer critical bubble between routers.

escape resources. This would increase to six layers if the traditional
dateline technique is used. Each layer of virtual channels for
Localized BFC would require at least two buffers per VC. An
additional layer of virtual channels with at least one buffer per VCis
needed to implement minimal adaptive routing. This configuration
devotes a large portion of available resources (i.e., 3 out of 4 virtual
channel layers, or 6 out of 7 buffers) to avoid message-dependent
deadlock in adaptive routing and safeguard against likely rare cases
of potential deadlock.

3. Critical Bubble Scheme
3.1. The basic idea

Our proposed Critical Bubble Scheme is an efficient implemen-
tation of Theoretical BFC that retains global awareness properties
for realizing near-maximal benefits, while avoiding costly global
coordination. The principle behind the Critical Bubble Scheme is to
mark and track as critical at least one bubble in each directional
ring of a network and restrict the use of critical bubble(s) only
to packets traveling within dimensions to prevent deadlock, as in
Theoretical BFC. Critical bubble(s) flow within and are confined to
directional rings of the network. Their movement is tracked using
nominal control signals between neighboring routers. In essence,
their presence (or non-presence) at router nodes conveys global in-
formation across each network dimension about what restrictions
should be enforced locally to avoid deadlock.

As an illustration of how the scheme works, consider an
arbitrary ring within a 2D torus as shown in Fig. 5. Initially,
for each unidirectional ring of the network, a free buffer in any
router along the ring is marked as the critical bubble for the
entire ring (i.e., striped rectangle). This critical bubble is transferred
backwards between routers and tracked along the ring as intra-
dimensional packets displacing it move forward. Assume a packet
P from another dimension wishes to enter this dimension through
router R. If the one free buffer in R’s local receiving channel is not
the critical bubble (i.e., it is a non-critical bubble as shown in the
figure), the packet is allowed to enter this dimension (i.e., it is
allocated the free buffer) immediately. The packet need not wait for
a second buffer in the local channel to become free as in Localized
BFC nor does it have to check buffer occupancy of other nodes along
the ring for explicit global awareness. The absence of the critical
bubble at the local router indicates the existence of a free buffer
elsewhere in the ring, thus providing implicit global awareness.

3.2. Detailed description of the Critical Bubble Scheme

(1) Initialization: Assume a k-ary n-cube in which every
dimension is composed of two opposite unidirectional rings. For
each unidirectional ring, a random free buffer from any router
channel belonging to this direction can be marked as the critical
bubble. The resulting network has one critical bubble in every
dimension and direction. The other free buffers operate as normal
buffers (i.e., non-critical bubbles).

(2) Formal rules: In implementing Theoretical BFC, the Critical
Bubble Scheme imposes the following two rules on the forwarding
of packets to avoid deadlock.

(i) Forwarding of a packet within a dimension is allowed if the
receiving channel buffer has one packet-sized free buffer, no
matter whether it is a normal free buffer or a critical bubble.

(ii) Forwarding of a packet from one dimension to another
(including injection of a new packet into a dimension) is
allowed only if the receiving channel buffer has at least one
packet-sized normal free buffer. It is not allowed if the only
packet-sized free buffer is a critical bubble.

(3) Transfer of critical bubbles: A key requirement of the Critical
Bubble Scheme is always to maintain a free buffer (critical bubble)
in each unidirectional ring of the network. According to the types
of packet forwarding, there are two cases to be considered.

(a) If a packet is allowed to change dimension or inject into a
new dimension, then according to the second rule, there is
a normal free buffer ready to accept this packet. Hence, the
critical bubble remains untouched.

(b) If a packet is forwarded from router A to router B within a
dimension, then if the receiving buffer in router B has a normal
free buffer, the critical bubble remains unused. Otherwise, as
depicted in Fig. 6, the arrival of packet 1 at router B displaces
the critical bubble backward to router A. This is done by router
B asserting a special control line to indicate to router A that it
should mark the newly freed buffer in router A as the critical
bubble for the ring. More implementation details are provided
in Section 4.

3.3. Impact on implementation and performance

The Critical Bubble Scheme provides an elegant and efficient
implementation solution to overcome the difficulties of imple-
menting Theoretical BFC while still avoiding the deficiencies of
Localized BFC. It is also particularly useful in supporting multiple
message classes in buffer-resource-limited on-chip network envi-
ronments.

(1) Implementing global awareness of Theoretical BFC: As
discussed in Section 2, the most difficult problem in implementing
Theoretical BFC is the need for a global controller. The main
advantage of the Critical Bubble Scheme is its global awareness
without the need for a complex global controller. No status
information needs to be gathered or distributed remotely across
the network, and no uncertainty arises as to whether local
routers can allocate buffer resources to packets when multiple
simultaneous requests are made for dimensional resources. This is
illustrated in Fig. 7 which shows the same scenario shown in Fig. 2
but for the Critical Bubble Scheme. Again, we have two free buffers
in the dimension but also have two packets wishing to turn into the
dimension. At most one of these packets should be granted access.
It is clear that router A will deny access as there is no normal free
buffer left, and router B will grant access. Uncertainty is removed
without needing explicit global coordination.

(2) Avoiding the deficiencies of Localized BFC: The Critical Bubble
Scheme also avoids all three deficiencies of Localized BFC. First,
there is no increased access delay. Fig. 8 depicts the scenario in

1416 L. Chen et al. / . Parallel Distrib. Comput. 72 (2012) 1412-1422

Router Router B

Router Router A
%ﬂﬂ::>

le

Router Router

Fig. 7. Simultaneous injections have no uncertainty with the Critical Bubble

Scheme.
Router B Router Router
s

Fig. 8. Simultaneous injection of multiple packets with the Critical Bubble Scheme.

Router Router

Fig. 3 but for the Critical Bubble Scheme. As can be been, even
though there is only one free buffer at either of the receiving
channels in routers A and B, both packets can access this dimension
immediately without incurring extra buffer access delay.

Second, the scheme improves buffer utilization over Localized
BFC. As shown in Fig. 4, no matter whether the critical bubble is in
one of the five injecting router channels or in the rightmost router,
only six free buffers are required to grant all accesses, achieving the
minimum number of free buffers as in the theoretically-optimal
case.

Third, as mentioned in Section 2.2, Localized BFC requires a
minimum of two packet-sized buffers in every receiving channel
while Theoretical BFC requires only one. The reason is that
Localized BFC has to check that there are at least two free buffers
in the channel buffer before allowing packets access. With the
Critical Bubble Scheme, just one packet-sized buffer is required
in every channel as this scheme checks only that there is at least
one normal free buffer in the channel before granting access to
packets. Therefore, the Critical Bubble Scheme effectively achieves
the minimum number of buffers in every channel as dictated by
Theoretical BFC.

(3) Efficiently handling message-dependent deadlock: As de-
scribed earlier, in order to eliminate deadlock among the various
message classes, routers require at least one escape virtual channel
per port for each message class. With the Critical Bubble Scheme,
it is possible to halve the buffer resources required in each chan-
nel and allocate the saved buffers to adaptive channels to speed
up the common case. For the MOESI directory protocol example in
Section 2.3, the Critical Bubble Scheme minimally requires three
packet-sized buffers — one for each of the three message classes
to implement escape paths — which allows the adaptive channel
to use the four remaining buffers assuming the same total channel
buffer budget. This greatly increases the potential buffer utiliza-
tion and can improve system performance, as shown experimen-
tally later in Section 5.

3.4. Deadlock freedom

This subsection provides formal proof sketches of the deadlock
freedom of the proposed Critical Bubble Scheme for virtual cut-
through switched torus networks for all the cases discussed above.
To facilitate the proofs, we first introduce some basic definitions
derived from [8].

Definition 1. Q represents the set of input queues associated with
router nodes. Each queue g; € Q has capacity of cap(q;) packets
and the current number of packets occupying the queue is denoted
as size(q;). Q; is a subset of Q consisting of all injection queues.
Q, is a subset of Q consisting of all input queues belonging to
some unidirectional ring y. Each queue, g;, associates with a binary
number b;. It is set to 1 if the next free buffer of this queue is a
critical bubble.

Definition 2. F(g;, g;) is the flow control function for a packet that
wishes to enter g; from g;. It can be either true or false, and the
packet is allowed to take this move only if F is true.

Definition 3. If at any given cycle, there is at most one injection
request to Q, (or forwarding request from another dimension to
dimension y), then the request pattern is called sequential injection
requests. Otherwise, if there are multiple injection requests to Q,
(including forwarding requests from another dimension) in the
same cycle, then the request pattern is called simultaneous injection
requests.

Definition 4. A dependency between message classes M; and
M; in which the generation of messages in M; depends on
the consumption of messages in M; at nodes, defined by the
communication protocol, is denoted by M; <— M;, in which < is
a partial order relation indicating that M; precedes M; which is the
terminus of the dependency.

Lemma 1. The Critical Bubble Scheme is deadlock-free under sequen-
tial injection requests.

Proof Sketch. Assume there is a packet that wishes to move from
g; in unidirectional ring x of a dimension to g; in unidirectional
ring y in another dimension. The rules of Theoretical BFC are the
following:

Rule 1. When x =y, F(q;, q;) is True if : size(q;) < cap(q;) — 1 (1)
Rule2. Whenx # y Vv qi € Qi, F(q;, q;) is True if : size(q;)

<cap(g) — 1A (2)
Zsize(qk) < anp(qk) —2, over allgx € Q,. (3)
The rules of Critical Bubble Scheme are the following:

Rule 1*. When x =y, F(q;, g;) is True if : size(qj) < cap(gj) — 1 (4)
Rule 2*. Whenx #y Vv q; € Q;, F(g;,) is True if : size(q;)

<cap(q) — 1A (5)
b; = 0. (6)

We now prove by considering all cases that if a flow control
function Fcgs satisfies Rule 1* and 2*, it must also satisfy Rule 1
and 2. First, comparing (1) with (4) and (2) with (5), they are
exactly the same. Second, since Fcgs follows (6), it means the critical
bubble is not in the next free buffer of input queue g; but is
somewhere else in Q. This indicates that there are at least two free
buffers in unidirectional ring y: one is the free buffer found in (5),
and the other is the critical bubble elsewhere in the ring. This is
exactly the condition of (3). Therefore, by enforcing the two new
rules, the Critical Bubble Scheme also satisfies the rules enforced
by Theoretical BFC. As Theoretical BFC is proved to be deadlock-
free with sequential injection request under its two rules in [1],
the Critical Bubble Scheme is also deadlock-free under sequential
injection request. [

Lemma 2. The Critical Bubble Scheme is deadlock-free under simul-
taneous injection requests.

Proof Sketch. First consider the case of packets being transported
only within unidirectional rings of a network. As long as a critical
bubble exists within each unidirectional ring, there is no intra-
dimensional deadlock. This is because, in the worst case of all
other buffers in the unidirectional rings being occupied, the critical
bubble within each ring serves as the last free buffer, guaranteeing
that at least one packet in each ring can make forward progress.
This is the fundamental principle behind Bubble Flow Control.

L. Chen et al. /]. Parallel Distrib. Comput. 72 (2012) 1412-1422 1417

—— | Routing Module |[+——

—>| Arbitration Unit |[«———

put buffer: Output port

5

B0 |3
=< T |2
I
:><: ﬂ
Input buffer: Output port
Jutput po
E*D]]] 5
: =
=
il ﬂ

Fig. 9. Typical virtual cut-through router microarchitecture. The shaded areas are
modified to implement the proposed Critical Bubble Scheme.

Now consider the situation in which there are k simultaneous
injection requests to ring y in cycle T by packets from outside
the ring and ring y has no intra-dimensional deadlock before T.
Each injection request is either rejected or granted. If every request
is rejected, then no more free buffers of ring y are consumed,
and ring y remains deadlock-free. Otherwise at least one request
is granted. Consider the worst case in which all requests are
granted. Since each granted request must satisfy (5) and (6),
there must be a normal free buffer (i.e., non-critical bubble) ready
to accept the injected packet. Therefore, even if all packets are
injected into ring y, a critical bubble continues to exist within
the ring guaranteeing that at least one packet in the ring can
make forward progress. Together with dimension-order routing,
no inter-dimensional deadlock can occur either. Thus, the Critical
Bubble Scheme is deadlock-free under simultaneous injection
requests. O

Lemma 3. The Critical Bubble Scheme applied to resources used for
each message class of a communication protocol is deadlock-free
under either sequential or simultaneous injection requests.

Proof Sketch. Assume there are n message classes and the total
virtual channel resources C are divided into two disjoint subsets C;
and G,. C; can be shared amongst all message classes (i.e., adaptive
channels) while G, is further divided into n independent subsets,
Sk (k = 1,2,...,n), one for each message class which is the
minimum needed to separate message classes into distinct sets
of escape resources, according to [19]. We prove the lemma by
induction, considering all cases.

Without loss of generality, assume the n message classes have
dependency My < M,--- < M,_1 < M, as defined by the
protocol. As any set of Sy is independent of other sets and a partial
ordering exists such that S; < S;--- <« S, 1 <« S, there is
no cyclic dependency among the n sets of escape virtual channels.
When applying the Critical Bubble Scheme to each message class
M, separately, according to Lemmas 1 and 2, S is deadlock-
free. However, as messages in M, which is the terminus of the
dependency can drain from S,;, messages in M, _; can also drain
from S,_; and so on until messages in M; drain from S;. Thus, the
union of Sy (i.e., the C, channels) serve as escape resources for all
channels C, including C; channels. According to [19], no deadlock
canoccur. O

4. Router architecture

This section discusses the modification of standard router
architecture to support our Critical Bubble Scheme.

4.1. Typical virtual cut-through router architecture

Fig. 9 shows a block diagram of the architecture of a typical
virtual cut-through router. Arriving packets first get stored in the
input buffer and advance in FIFO manner. The routing module is
responsible for computing the output port for packets. When a
packet is at the head of the FIFO queue and ready to move, the
arbitration unit will configure the switch to set up a path for the
packet to the allocated virtual channel in the output. The packet
then traverses the switch to the output port and moves to the next
hop. In a cut-through router, virtual channel allocation and switch
arbitration can be merged into a single module [7], denoted as the
Arbitration Unit here. Each output virtual channel also contains
several state fields to track its status, including a state I that records
the input port and virtual channel that are forwarding packets to
this output virtual channel, and a state C that counts the number
of credits in the downstream input channel buffer.

4.2. Router architecture for Critical Bubble Scheme

The router architecture to enable the Critical Bubble Scheme is
very similar to the typical virtual cut-through router architecture.
We need three modifications to the router architecture as shown
shaded in Fig. 9: a counter B at the output channel to count the
number of critical bubbles in the input channel of the downstream
router, a 1-bit control line to indicate the increase of B, and a
slightly modified Arbitration Unit.

To illustrate the modification needed for the arbitration unit, we
compare the original arbitration unit and the modified one. During
arbitration, the original arbitration unit checks the availability of
output virtual channels and whether there is packet entering or
waiting in the input channel. Our modified arbitration unit adds
the following check in parallel with the original checks:

No = Bshould be less
than C

Yes = If B = C, assert
control line

Input channel is in the same
dimension as the output channel?

In the above condition, if the input is not in the same dimension
as the output, then the added checking makes sure that there is
at least one normal free buffer in the downstream input channel
as the downstream channel has C free buffers but only B critical
bubbles (e.g., B = 1). Since the output channel has a field I
which records the input port and virtual channel, it needs only two
comparators for the comparison of the input/output ports and B
with C.

If the case of intra-dimensional packet forwarding, the arbitra-
tion unit checks whether B equals C before the packet is forwarded.
If B equals C, the forwarded packet will occupy a critical bubble in
the downstream input channel, causing the critical bubble to be
displaced and transferred backward to the input channel of the
router from which the packet came. This is done by decreasing B
by 1 and decreasing the credit count. As the number of critical bub-
bles of the current router is stored in the upstream router, the 1-bit
control line associated with the upstream router (denoted by con-
trol line in the figure) is asserted. When the upstream router de-
tects an asserted control line signal, it will decrease its B in the next
cycle and deassert the control line to complete the critical bubble
transfer.

5. Evaluation
In this section, we present a detailed evaluation of our proposed

Critical Bubble Scheme. We first stress this scheme under synthetic
traffic to validate its correctness quantitatively across a wide

1418

—&— Localized BFC —#— Critical Bubble Scheme Theoretical BFC

180 T
g 150 j
S
g 120 I
? I
c
L 90 V.
k] 4 y”
860 T e 42
3 ———
§ :
I 30

0 t t t t t

0 0.1 0.2 03 04 0.5 06

Applied Load (flits/cycle/node)
(a) Uniform random.

—&— Localized BFC —#li— Critical Bubble Scheme Theoretical BFC

180 ’

[,
u
o

-
N
o

@
o
L

b

Average Latency (cycles)
o
o

w
o

o

0 0.1 0.2 0.3 0.4
Applied Load (flits/cycle/node)

(c) Bit complement.

L. Chen et al. / . Parallel Distrib. Comput. 72 (2012) 1412-1422

—&— Localized BFC —#— Critical Bubble Scheme Theoretical BFC

180 _’
ff 150 1|
°
g 120 T
g 90 /
5 !
[

e S
[r— g f]
Z 30

0

0 0.1 0.2 03 0.4 0.5
Applied Load (flits/cycle/node)
(b) Perfect shuffle.

—4&— Localized BFC —fli— Critical Bubble Scheme Theoretical BFC

180 l
7 150
: |
S
g 120 .’A
g
g 9]
3 4|
::‘!n 60 - !‘4‘_!‘_!‘_1‘__/_47'1
o
Z 30

0

0 0.1 0.2 03 0.4 0.5

Applied Load (flits/cycle/node)

(d) Transpose.

Fig. 10. Effects of the Critical Bubble Scheme under different synthetic traffic patterns.

range of load rates, examine its effects on buffer utilization, and
compare its performance against other bubble-based flow control
mechanisms. We then investigate the effectiveness of the Critical
Bubble Scheme in handling message-dependent deadlock using
full system simulation with the PARSEC benchmark suite.

5.1. Simulation methodology using synthetic loads

To evaluate the proposed scheme using synthetic loads, we
implement it on a general-purpose cycle-accurate interconnection
network simulator GARNET [2] written in C++. We modified the
simulator to support virtual cut-through, adaptive routing and the
Critical Bubble Scheme. Routers use a standard 4-stage pipeline
with 1 cycle for link traversal. An 8-ary 2-cube torus network with
bidirectional physical channels is simulated. Deadlock avoidance
based on Bubble Flow Control is assumed using one escape and
one adaptive virtual channel per physical channel and each virtual
channel has two packet-sized buffers.

All simulations are run for 100,000 cycles with a warm-up
period of 10,000 cycles. Packets are randomly generated to be
either short packets with single-flit or long packets with nine
flits. To stress the network, four synthetic traffic patterns are
used in these evaluations: uniform random, perfect-shuffle, bit
complement and transpose [7]. We compare the performance of
Theoretical BFC, Localized BFC, and the Critical Bubble Scheme.

5.2. Effects of Critical Bubble Scheme under synthetic traffic

As the basis of this evaluation, we first validate the correctness
of the Critical Bubble Scheme. Fig. 10 plots the performance of
three versions of Bubble Flow Control: Theoretical BFC which is
possible only in simulation and impractical in reality, Localized
BFC which is a simplified implementation used in the original BFC
paper [18], and our proposed Critical Bubble Scheme (CBS). As

can be seen in the figure, the performance of CBS closely follows
Theoretical BFC for all four traffic patterns, indicating that the
proposed scheme is able to efficiently implement Theoretical BFC
and, therefore, achieve similar potential maximum benefits.

When comparing the performance of CBS with Localized BFC
under these four traffic patterns, CBS clearly has advantages.
Specifically, CBS has much lower latency at medium and high
load rates (relative to the load rate at the saturation point unless
otherwise stated). When the applied load rate is low, buffer
occupancy also is low in both schemes. Therefore Localized BFC,
which requires at least two free buffers in the channel when
injecting or changing dimensions of a packet, has almost the
same effect as CBS which requires only one normal free buffer.
However, as the applied load rate increases, the deficiencies
of increased buffer access delay and low buffer utilization for
Localized BFC gradually manifest while CBS, which has lower
buffer requirements, enjoys a higher success rate for injection and
changing dimensions by packets. The above lead to performance
gains for the Critical Bubble Scheme under medium and high load
rates.

To further demonstrate the effect of CBS on reducing the buffer
access delay portion of packet latency, Fig. 11 plots the buffer
access delay of CBS normalized to that of Localized BFC at medium
and high load rates under the four traffic patterns. While the buffer
access delay for injecting or changing dimensions of packets are
very close between CBS and Theoretical BFC, the histogram shows
significant reduction by up to 62% for CBS over Localized BFC. This
indicates that the proposed Critical Bubble Scheme successfully
overcomes the deficiencies of Localized BFC while achieving lower
access delay and higher buffer utilization offered by Theoretical
BEFC.

5.3. Simulation methodology using full system simulation

We also evaluate the Critical Bubble Scheme under real
application workloads using full system simulation. The simulation

L. Chen et al. /]. Parallel Distrib. Comput. 72 (2012) 1412-1422

Localized BFC ~ ® Critical Bubble Scheme Theoretical BFC

100%

80%

60%

40%

20%

Normalized Access Delay

0% T T T
0.32 0.37 0.40 0.42

Applied Load (flits/cycle/node)

(a) Uniform random.

Localized BFC ~ m Critical Bubble Scheme Theoretical BFC

100%

80%

60%

40%

20%

Normalized Access Delay

0% T T T
0.23 0.28 0.30 0.32

Applied Load (flits/cycle/node)
(c) Bit complement.

1419

Localized BFC M Critical Bubble Scheme Theoretical BFC

100%
>
Kl
8 80% — — —
a
g 60% — — —
<
-3
g 40% — — —
g
5 20% 1 1 1 —
z
0% T T T
0.27 0.32 034 0.37
Applied Load (flits/cycle/node)
(b) Perfect shuffle.
Localized BFC ~ ® Critical Bubble Scheme Theoretical BFC
100%
5
g 80% — — —
a
§ 60% | — — —
<
o
8 40% — — — —
g
5 20% — — — —
z
0% T T T
0.27 031 0.34 0.36
Applied Load (flits/cycle/node)
(d) Transpose.

Fig. 11. Effect of the Critical Bubble Scheme on reducing buffer access delay.

Table 1

Parameters used in full system simulation.
Component Parameters
Network topology 4 x 4 Torus
Core In-order, 3 GHz
Private L1 1& D cache 16 kB, 2-way, 1 cycle, LRU
Shared L2 cache 512 kB, 16-way, 6 cycles, LRU
Router 4-stage (RC-VA-SA-ST), 1 GHz
Link bandwidth 64-bit | cycle
Memory latency 128 cycles

infrastructure is based on SIMICS [11] enhanced with GEMS [13] for
detailed timing of the memory and the modified GARNET [2]. We
simulated a 16-node chip connected by a 4 x 4 2-D torus. Each node
has an in-order core, a 16 kB private L1 cache and a 512 kB bank
of shared L2 cache. The MOESI directory cache coherence protocol
is used in the system with 2 memory controllers. Messages are
divided into two lengths of packets. Short packets are 8-byte
single-flit while long packets carrying 64-byte cache lines have
nine flits. Additional parameters are listed in Table 1. We run
PARSEC [4] benchmark suite compiled with pthread programming
model.

To investigate the effectiveness of the Critical Bubble Scheme in
handling message-dependent deadlock, we compare two config-
urations using the same buffer budget. Since the MOESI directory
protocol has three dependent message classes, configuration 1 em-
ploys Localized BFC as the flow control for the three escape virtual
channels, each having two packet-sized buffers. There is also a one
packet-sized buffer for the adaptive virtual channel shared by all
message classes. This is the minimal buffer resources required by
Localized BFC using adaptive routing. Configuration 2 employs the
Critical Bubble Scheme for each of the one packet-sized buffer for
the escape virtual channel. The remaining four packet-sized buffers

are used for adaptive virtual channels. Hence, both configurations
have similar budget (i.e., 7 long packet-sized buffers) for imple-
menting the 4 virtual channels per physical channel.

5.4. Effects of Critical Bubble Scheme in handling message-dependent
deadlock

Fig. 12 compares the execution time of configuration 1 using
Localized BFC and configuration 2 using the Critical Bubble
Scheme across the benchmark suite. To present data from multiple
applications more effectively, execution time is normalized to
configuration 1. The results vary among applications as different
applications may generate distinct network loads and have
different sensitivity to network performance. On average, there
is 7.2% overall execution time reduction with configuration 2.
There are two major reasons for this improvement. The first is
similar to the synthetic traffic case as the Critical Bubble Scheme
reduces buffer access delay and increases buffer utilization. The
second stems from the larger amount of buffer resources that
can be used by adaptive virtual channels owing to the reduced
resource requirements for escape virtual channels with our
proposed scheme. This advantage of the Critical Bubble Scheme
over Localized BFC increases with more complex protocols that
have a greater number of dependent message classes.

We further analyze the impact of Critical Bubble Scheme on
network performance in this environment of multiple message
classes. Fig. 13 breaks down the average packet latency into zero-
load latency (consists of serialization latency and hop latency)
and contention latency [7]. Compared with configuration 1,
configuration 2 using the Critical Bubble Scheme achieves an
average of 18.8% reduction in average packet latency. This is
mainly because the competition for scarce adaptive resources in
configuration 1 incurs a large increase in contention latency. By
using limited buffer resources more efficiently, configuration 2 is
able to achieve better performance.

1420

Config. 1 with Localized BFC

L. Chen et al. / . Parallel Distrib. Comput. 72 (2012) 1412-1422

M Config. 2 with Critical Bubble Scheme

. [— S
= 08
c
2 06
3
L 04
w
T 02
2
g 0
S
2 & & > R & e e & o © ™ &
& ¢ ¢ ¢ E ¢S NFCAIES
& ob* & s S) N Q\@Q
O o 3 3 S
3¢ N é&

Fig. 12. Comparison of normalized execution time across different PARSEC applications.

C1: Config. 1 with Localized BFC

C2: Config. 2 with Critical Bubble Scheme

Contention latency
M Hop latency

Serialization latency

Average Packet Latency (cycle)

Ccic2 c1c2 c1c2 @

C. cicz

T S & £
< -1 = e
£ 3 & £
g :
3

S

=

2

- i
5 g
© ©
; ;
g g
£ £
z g
o

(9]
=
blackscholes Q1

Cic2 cC1c2 c1c2 ci1c2 cic2 cie2

" .
&g 3 @
> x <

streamcluster
swaptions

Fig. 13. Comparison of the breakdown of average packet latency across different applications.

6. Discussion
6.1. Scalability of Critical Bubble Scheme

We consider the scalability in terms of different network sizes
and buffer sizes. With continuing technology scaling, the number
of nodes to be connected in the network likely will increase.
For larger networks, the difference between locally- and globally-
aware flow control is more pronounced as local information can
hardly reflect the global status of the network and the delay in
propagating network state to local nodes will increase. Thus, the
benefits of globally-aware CBS will be even greater for larger
networks. Simulation results show that under uniform random
traffic and high injection rate (i.e.,, 95% of the corresponding
saturation load rate), average packet latency difference of CBS over
Localized BFC for network sizes of 4 x 4 and 8 x 8 are 22.3% and
27.2%, respectively.

When buffers are large, there is little difference between
Localized BFC and CBS as many free buffers are available anyway.
However, in the more interesting and practical case (e.g., for NoCs)
of shallow buffers, the relative fraction of free buffers needing
to be reserved to avoid deadlock in Localized BFC is higher than
with CBS, further reducing resource efficiency relative to CBS
and causing increased performance degradation. The extreme
case of one packet-sized buffer per channel precludes the use
of Localized BFC. Simulation results show that when buffer size
decreases from 4 to 3 to 2 buffers per channel under uniform
random traffic and high injection rate, average latency difference
of CBS over Localized BFC increases from 6.6% to 12.5% to 27.2%,
respectively.

6.2. Implementing buffer occupancy-based global flow control using
multiple critical bubbles

It is interesting to see that BFC is actually a special case of
buffer occupancy-based flow control mechanisms which restrict

the use of buffers based on their occupancy. A typical example
of this is congestion control, which restricts packet injection into
the network when the buffer occupancy is above a threshold to
avoid drop in throughput from network saturation. Throttling can
be locally-aware if it uses buffer occupancy of the local router
or globally-aware if it uses aggregate buffer occupancy across
a network dimension or throughout the network. The globally-
aware version has many potential benefits as discussed, but
efficient implementations remain a challenge.

The Critical Bubble Scheme can be generalized to implement
this general class of globally-aware flow control. The idea is to
allow multiple critical bubbles instead of just a single critical
bubble as a quasi means of throttling packet injection to relieve
network pressure. The only modification to the operation of the
Critical Bubble Scheme described above is to mark multiple free
buffers as critical bubbles during network initialization. The same
two rules are enforced for forwarding packets, and deadlock
freedom remains guaranteed. In this way, a broader class of
globally-aware flow control mechanisms - such as global flow
control with a preset buffer occupancy threshold T, self-tuned
global congestion control with adaptive threshold T, and so on
- can be implemented efficiently. Preliminary results show that
global congestion control implemented using multiple critical
bubbles successfully sustains throughput after network saturation
giving 11% higher throughput than local congestion control. More
discussion and preliminary results are presented in [6]. Further
investigation of this topic is left for future work.

7. Related work

The notion of using bubbles (or ghost packets) in flow control
to avoid deadlock in torus networks was first proposed in [5,
18], and adopted in the IBM Blue Gene/L [1]. However, only a
localized version of Bubble Flow Control was actually implemented
as opposed to a globally-aware version as proposed here.

L. Chen et al. /]. Parallel Distrib. Comput. 72 (2012) 1412-1422 1421

Several works propose ways of improving buffer utilization
and/or reducing buffer requirements. In [20], bubbles are drawn to
heavily-congested spots within the network to relieve congestion
and maintain deadlock freedom. Flit-reservation flow control was
proposed in [16] to use buffers efficiently and reduce latency by
scheduling buffer usage ahead of time. In [15], aggressive bufferless
routing was proposed to eliminate the need for buffers. Our scheme
differs from these proposals in that critical bubbles are used both to
implement globally-aware flow control efficiently and to minimize
buffer requirements for avoiding deadlock.

Message-dependent deadlock was discussed in detail in [19],
and the formal model proposed in [22] can be used to analyze
it. While those works provide foundation for handling message-
dependent deadlock, our scheme can be employed to improve their
efficiency.

Extensive evaluations of using global congestion control were
presented in [9,10,14], which demonstrated the advantages of
globally-aware flow control from a simulation perspective and
showed that a buffer occupancy of around 50% results in high
and sustained peek throughput. An ideal global controller is
assumed in the evaluation, which is impractical to implement.
Self-tuned congestion control using global knowledge is proposed
in [21]. It uses a dimension-wise aggregation scheme to gather
and propagate global information one hop after another, and the
performance is shown to be better than the ALO scheme [3].
However, that scheme has to endure long delay to gather global
information. Our proposed scheme can make grant decisions
instantaneously.

8. Conclusions

Globally-aware flow control in interconnection networks has
many potential advantages over locally-aware flow control but
faces several serious implementation difficulties. The primary
contribution of this paper is the development of the Critical
Bubble Scheme (CBS) to provide a way to correctly and efficiently
implement globally-aware flow control mechanisms. By marking
a certain number of free buffers as critical bubbles (minimally
one) and appropriately using them to restrict packet injection, this
scheme achieves near-optimal performance offered by globally-
aware flow control mechanisms while avoiding costly explicit
global control and coordination. The proposed scheme can be
readily applied to both off-chip and on-chip networks that employ
Bubble Flow Control to ensure freedom from both routing-induced
and protocol-induced deadlock.

Acknowledgments

The helpful comments and suggestions made by the reviewers
are gratefully acknowledged. This research was supported, in part,
by the National Science Foundation (NSF), grants CCF-0541417 and
CCF-0946388.

References

[1] N.R. Adiga, M.A. Blumrich, D. Chen, P. Coteus, A. Gara, M.E. Giampapa,
P. Heidelberger, S. Singh, B.D. Steinmacher-Burow, T. Takken, M. Tsao,
P. Vranas, Blue Gene/L torus interconnection network, IBM Journal of Research
and Development 49 (2005) 265-276.

N. Agarwal, T. Krishna, L.-S. Peh, N.K. Jha, GARNET: a detailed on-chip
network model inside a full-system simulator, in: International Symposium
on Performance Analysis of Systems and Software, ISPASS, 2009, pp. 33-42.
E. Baydal, P. Lopez,]. Duato, A simple and efficient mechanism to prevent
saturation in wormhole networks, in: 14th International Parallel and
Distributed Processing Symposium, IPDPS, 2000, pp. 617-622.

[2

[3

[4] C. Bienia, S. Kumar, J.P. Singh, K. Li, The PARSEC benchmark suite: character-
ization and architectural implications, in: 17th International Conference on
Parallel Architectures and Compilation Techniques, PACT, 2008, pp. 72-81.

[5] C. Carrion, C. Izu, J.A. Gregorio, F. Vallejo, R. Beivide, Ghost packets: a
deadlock-free solution for k-ary n-cube networks, in: Proceedings of the Sixth
Euromicro Workshop on Parallel and Distributed Processing, 21-23 Jan. 1998,
pp. 133-139.

[6] L. Chen, R. Wang, T.M. Pinkston, Critical bubble scheme: an efficient
implementation of globally-aware network flow control, in: 25th IEEE
International Parallel & Distributed Processing Symposium, IPDPS, 2011.

[7] W. Dally, B. Towles, Principles and Practices of Interconnection Networks,
Morgan Kaufmann Publishers Inc., 2003.

[8] J. Duato, A necessary and sufficient condition for deadlock-free routing in cut-
through and store-and-forward networks, IEEE Transactions on Parallel and
Distributed Systems (TPDS) 7 (1996) 841-854.

[9] C. Izu, Restrictive turning: deadlock freedom and congestion control for
oblivious cut-through networks, in: 4th Australasian Computer Architecture
Conference, ACAC, Auckland, 1999, pp. 251-262.

[10] C. Izu, C. Carrion, J.A. Gregorio, R. Beivide, Restricted injection flow control
for k-ary n-cube networks, in: 10th International Conference on Parallel and
Distributed Computing Systems, 1997, pp. 511-518.

[11] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J.
Hogberg, F. Larsson, A. Moestedt, B. Werner, Simics: a full system simulation
platform, IEEE Computer 35 (2002) 50-58.

[12] M.M.K. Martin, D.J. Sorin, B.M. Beckmann, M.R. Marty, M. Xu, A.R. Alameldeen,
K.EE. Moore, M.D. Hill, D.A. Wood, Multifacet’s general execution-driven
multiprocessor simulator toolset, ACM SIGARCH—Computer Architecture
News 33 (2005) 92-99.

[13] J.F. Martinez,]J. Torrellas,]J. Duato, Improving the performance of bris-
tled CC-NUMA systems using virtual channels and adaptivity, in: Pro-
ceedings of the International Conference on Supercomputing, ICS, 1999,
pp. 202-209.

[14] J. Miguel-Alonso, C. Izu,].A. Gregorio, Improving the performance of large in-
terconnection networks using congestion-control mechanisms, Performance
Evaluation 65 (2008) 203-211.

[15] T. Moscibroda, O. Mutlu, A case for bufferless routing in on-chip networks, in:
36th Annual International Symposium on Computer Architecture, ISCA, 2009,
pp. 196-207.

[16] L.-S. Peh, WJ. Dally, Flit-reservation flow control, in: 6th International
Symposium on High-Performance Computer Architecture, HPCA, 2000,
pp. 73-84.

[17] T.M. Pinkston, S. Warnakulasuriya, On deadlocks in interconnection networks,
in: 24th Annual International Symposium on Computer Architecture, ISCA,
1997, pp. 38-49.

[18] V.Puente, C. Izu, R. Beivide, J.A. Gregorio, F. Vallejo,].M. Prellezo, The adaptive
bubble router, Journal of Parallel and Distributed Computing (JPDC) 61 (2001)
1180-1208.

[19] Y.H. Song, T.M. Pinkston, A progressive approach to handling message-
dependent deadlock in parallel computer systems, IEEE Transactions on
Parallel and Distributed Systems (TPDS) 14 (2003) 259-275.

[20] Y.H. Song, T.M. Pinkston, Distributed resolution of network congestion and
potential deadlock using reservation-based scheduling, IEEE Transactions on
Parallel and Distributed Systems (TPDS) 16 (2005) 686-701.

[21] M. Thottethodi, A.R. Lebeck, S.S. Mukherjee, Exploiting global knowl-
edge to achieve self-tuned congestion control for k-ary n-cube networks,
IEEE Transactions on Parallel and Distributed Systems (TPDS) 15 (2004)
257-272.

[22] S. Warnakulasuriya, T.M. Pinkston, Formal model of message blocking and
deadlock resolution in interconnection networks, IEEE Transactions on Parallel
and Distributed Systems (TPDS) 11 (2000) 212-229.

Lizhong Chen is currently a Ph.D. student in Computer
Engineering at University of Southern California. He
received his B.S. degree in Electrical Engineering from
Zhejiang University in 2009, and M.S. degree in Electrical
Engineering from the University of Southern California in
2011. He was a research assistant in the Institute of VLSI
Design at Zhejiang University in China from 2007 to 2009.
His research interests focus on interconnection networks
for parallel computing systems.

Ruisheng Wang is currently a Ph.D. student in Computer
Engineering at University of Southern California. He
received his B.S. degree in Computer Science from North
China University of Technology, Beijing, China, in 2006
and his M.S. degree from Tsinghua University, Beijing,
China in 2009. His research interests focus on computer
architectures for multicore and multiprocessor system.

1422

L. Chen et al. / . Parallel Distrib. Comput. 72 (2012) 1412-1422

Timothy M. Pinkston received the BSEE degree from
The Ohio State University in 1985 and the MSEE and
Ph.D. degrees from Stanford University in 1986 and 1993,
respectively. He is currently a professor in the Ming Hsieh
Department of Electrical Engineering and Vice Dean of
Faculty Affairs in the Viterbi School of Engineering at
the University of Southern California. Recently, he served
three years as the program director of the Computer and
Information Science and Engineering Directorate of the
US National Science Foundation (NSF) for the computer

systems architecture area and the Expeditions in Computing Program. His research
interests include interconnection networks and communication architectures for
parallel processing systems, in particular multicore and multiprocessor computers.
His professional service includes serving on the editorial board of IEEE Transactions
on Parallel and Distributed Systems (TPDS) and on the IEEE TPDS Editor-in-Chief
search and re-appointment committees. He has taken on leadership roles and
membership in many conferences and workshops in the fields, including ISCA,
HPCA, ICPP, IPDPS, NOCS and HiPC. He recently served as the Program Chair for
ICPADS’06, the General Chair for IPDPS’07, and the Program Chair for HPCA’09. He
is a fellow of the IEEE.

	Efficient implementation of globally-aware network flow control
	Introduction
	Need for efficient implementation of globally-aware flow control
	1 pros and cons of globally-aware flow control
	Bubble Flow Control
	Inefficiency of Localized BFC for handling protocol-induced deadlock

	Critical Bubble Scheme
	The basic idea
	Detailed description of the Critical Bubble Scheme
	Impact on implementation and performance
	Deadlock freedom

	Router architecture
	Typical virtual cut-through router architecture
	Router architecture for Critical Bubble Scheme

	Evaluation
	Simulation methodology using synthetic loads
	Effects of Critical Bubble Scheme under synthetic traffic
	Simulation methodology using full system simulation
	Effects of Critical Bubble Scheme in handling message-dependent deadlock

	Discussion
	Scalability of Critical Bubble Scheme
	Implementing buffer occupancy-based global flow control using multiple critical bubbles

	Related work
	Conclusions
	Acknowledgments
	References

