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Low Server Utilization
“Apple Inc. plans to invest $2 billion to build data centers ...”

Wall Street Journal, 2015

“Google plans to build 12 new cloud-focused data centers in
next 18 months ...”

bloomberg.com, 2016

“There are over 7,500 data centers worldwide, with over
2,600 in the top 20 global cities alone, and data center con-
struction will grow 21% per year through 2018.”

ciena.com, 2016
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Low Server Utilization

“Various analyses estimate industry-wide utilization is between 6%
and12%.”

“Reconciling High Server Utilization and Sub-millisecond Quality-of-Service” by Jacob Leverich and Christos Kozyrakis, 2014

“Such WSCs tend to have relatively low average utilization, spending
most of (their) time in the 10%–50% CPU utilization range.”

“Data Center as a Computer” by Luiz Andre Barroso, Jimmy Clidaras, and Urs Holzle, 2013
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Resource Interference (Uncontrolled Sharing)

Offline Batch 
Analytics 
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User Facing  
Latency Critical 
(Web Search)
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Shared Cache
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Resource Interference (Uncontrolled Sharing)

Offline Batch 
Analytics 

(MapReduce)

User Facing  
Latency Critical 
(Web Search)

Memory Bandwidth

Shared Cache

SLO Violation!!!

DRAM

To enable aggressive workload collocation,
shared on-chip resources need to be controlled

in an efficient and effective way.
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Shared On-chip Resources

Last-Level Cache

• Partitioning-induced associativity loss

• Unpredictable miss rate curve

Off-Chip Memory Bandwidth

• Unfair/Unreasonable memory
bandwidth allocation

On-Chip Network

• Expensive deadlock avoidance

Core

Core
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L3 Cache

Memory Controller
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My contributions

Efficient techniques for sharing last-level cache, off-chip memory bandwidth
and on-chip network

My contributions

• Last-level Cache
– Futility Scaling: High-Associativity Cache Partitioning (MICRO 2014)
– Predictable Cache Protection Policy (under preparation for submission)

• Off-chip Memory Bandwidth
– Analytical Model for Memory Bandwidth Partitioning (IPDPS 2013)

• On-Chip Network
– Bubble Coloring: Low-cost Deadlock Avoidance Scheme (ICS 2013)
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Title Page

An Analytical Performance Model for
Memory Bandwidth Partitioning



Shared Memory Bandwidth Management
Focus on fairness

• Fair Queue Memory System – divide the memory bandwidth equally for
each application [Nesbit et al., 2006]

Focus on throughput

• ATLAS – prioritize the applications that have attained the least service
over others [Kim et al., 2010a]

Focus on both throughput and fairness

• Thread Cluster Memory Scheduler – improves both system throughput
and fairness by clustering different types of threads together [Kim et al.,
2010b]
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Shared Memory Bandwidth Management
Focus on fairness

• Fair Queue Memory System – divide the memory bandwidth equally for
each application [Nesbit et al., 2006]

Focus on throughput

• ATLAS – prioritize the applications that have attained the least service
over others [Kim et al., 2010a]

Focus on both throughput and fairness

• Thread Cluster Memory Scheduler – improves both system throughput
and fairness by clustering different types of threads together [Kim et al.,
2010b]

What are the best memory bandwidth
partitioning schemes for different system

performance objectives?
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Model for Memory Bandwidth Partitioning
maximizex SystemObjectiveFunction(x)

subject to
N∑

i=1
xi ≤ B,i = 1, ... , N
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Model for Memory Bandwidth Partitioning
maximizex SystemObjectiveFunction(x)

subject to
N∑

i=1
xi ≤ B,i = 1, ... , N

Common System Performance Objectives
Throughput-oriented: Weighted Speedup / Sum of IPCs
Fairness: Minimum Fairness (Lowest Speedup)
Balancing throughput and fairness: Harmonic Weighted Speedup
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Single Application Performance Model

IPCshared ,i = APCshared ,i

APIi
= xi

APIi

• IPC: Instructions Per Cycle

• APC: memory Accesses Per Cycle

• API: memory Accesses Per
Instruction

Example
Assume an application takes 10,000
cycles to execute 1,000 instructions,
during which it generates 100
memory accesses

• IPC = 1,000/10,000 = 0.1

• API = 100/1,000 = 0.1

• APC = 100/10,000 = 0.01
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Harmonic Weighted Speedup

maximizex Hsp = N∑N
i=1

IPCalone,i
IPCshared ,i

= N∑N
i=1

APCalone,i
xi

subject to
N∑

i=1
xi ≤ B,i = 1, ... , N

• Optimal Partitioning — Square_root

xi

xj
=

√
APCalone,i√
APCalone,j
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Fairness

IPCshared ,i

IPCalone,i
= IPCshared ,j

IPCalone,j
=⇒ xi

APCalone,i
= xj

APCalone,j

• Optimal Partitioning — Proportional

xi

xj
= APCalone,i

APCalone,j
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Weighted Speedup

maximizex Wsp = 1
N

N∑
i=1

IPCshared ,i

IPCalone,i
= 1

N

N∑
i=1

xi

APCalone,i

subject to
N∑

i=1
xi ≤ B,i = 1, ... , N

• Optimal Partitioning — Priority_APC
– A fractional Knapsack problem
– The optimal memory request scheduling is to always prioritize the
requests from an application with a lower APCalone over the ones from an
application with a higher APCalone

– Similarly, the optimal partitioning for sum of IPCs is Priority_API
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Relationship between Performance Objectives
and Memory bandwidth Partitioning

Application 1

Application 2

Best Weighted Speedup 
Priority_APC

Best Fairness 
Proportional (1:4)

Best Harmonic Weighted Speedup 
Square_root (1:2)

APC
alone,1

APC
alone,2

= 1
4

Uncontrolled Sharing
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Relationship between Performance Objectives
and Memory bandwidth Partitioning

Application 1

Application 2

Best Weighted Speedup 
Priority_APC

Best Fairness 
Proportional (1:4)

Best Harmonic Weighted Speedup 
Square_root (1:2)

APC
alone,1

APC
alone,2

= 1
4

Uncontrolled Sharing

No One-Size-Fits-All

Different partitioning schemes are needed for optimizing different
system performance objectives

14 / 36



Evaluation Methodology
Full system simulator (Gem5) + Memory subsystem simulator (DRAMSim2)

System Configuration
Cores

• Four out of order cores
Caches

• L1 I-cache/D-cache
– 32KB, 2-way, 1 ns, 64B line

• Private unified L2
– 256KB, 8-way, 5 ns, 64B line

Memory

• DDR2-400

• tRP-tRCD-CL: 12.5-12.5-12.5ns

Workloads
• Benchmark: SPEC CPU 2006

• 14 Workloads
– Mix 4 benchmarks

• RSD: Relative Standard Deviation
of APCalones of co-scheduled
applications

• 7 Heterogeneous
– RSD > 30

• 7 Homogeneous
– RSD < 30

15 / 36



Results: Fairness
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Proportional scheme achieves highest minimum fairness (> 50%
improvement over No_partitioning)
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Results: Fairness

0

0.5

1

1.5

2

2.5

hetero-1 hetero-2 hetero-3 hetero-4 hetero-5 hetero-6hetero-7 average homo-1 homo-2 homo-3 homo-4 homo-5 homo-6 homo-7 average

N
o

r
m

a
li

z
e

d
 M

in
im

u
m

 F
a

ir
n

e
s
s

Equal Proportional Priority_APC Priority_API Square_root 2/3_power

same trend as heteogenous workloads

Proportional scheme achieves highest minimum fairness (> 50%
improvement over No_partitioning)
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Results: Weighted Speedup
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Results: Harmonic Weighted Speedup
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improvement over No_partitioning
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Summary of Bandwidth Partitioning Model

• Analytical model that establishes the relationship between memory
bandwidth partitioning schemes and system performance objectives

• No one-size-fits-all
– Based on the model, different optimal partitioning schemes for different
performance objectives are derived

• Extension for cache partitioning

IPCshared ,i = APCshared ,i

APIshared ,i
= memory_bandwidth_sharei

Fi (cache_capacity_sharei)
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Summary of Bandwidth Partitioning Model

• Analytical model that establishes the relationship between memory
bandwidth partitioning schemes and system performance objectives

• No one-size-fits-all
– Based on the model, different optimal partitioning schemes for different
performance objectives are derived

• Extension for cache partitioning

IPCshared ,i = APCshared ,i

APIshared ,i
= memory_bandwidth_sharei

Fi (cache_capacity_sharei)

Predictable cache miss rate curve
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Predictable Cache Protection Policy



Overview of Cache Protection Policies

Insertion based Policy
What fraction of incoming lines will
be protected? ⇒ insertion ratio ρ
Bimodal Insertion Policy (BIP1)

• 1/32 (ρ) of incoming lines are
inserted to MRU position

• The rest of incoming lines are
inserted to LRU position

Protecting Distance based Policy
How long will existing lines be protected?
⇒ protecting distance dp
Protecting Distance based Policy (PDP2)

• An inserted/reused line is protected
for dp accesses before its eviction

• An incoming line will bypass the
cache if no unprotected candidates
available

1M. Qureshi, et al. “Adaptive insertion policies for high performance caching” ISCA 2007
2N. Duong, et al. “Improving cache management policies using dynamic reuse distances” MICRO 2012
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Bimodal Insertion Policy (BIP1)

• 1/32 (ρ) of incoming lines are
inserted to MRU position

• The rest of incoming lines are
inserted to LRU position

Protecting Distance based Policy
How long will existing lines be protected?
⇒ protecting distance dp
Protecting Distance based Policy (PDP2)

• An inserted/reused line is protected
for dp accesses before its eviction

• An incoming line will bypass the
cache if no unprotected candidates
available

Why do we need predictability?
1. Help the cache controller to enforce better dp or ρ.
2. Help the resource allocation algorithm to make intelligent decisions
to share the cache.

1M. Qureshi, et al. “Adaptive insertion policies for high performance caching” ISCA 2007
2N. Duong, et al. “Improving cache management policies using dynamic reuse distances” MICRO 2012
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Predictable Cache Protection Policy (PCPP)
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Partition 1

Partition 2

protected region
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demotion
promtion

Bypass

Operations
On a hit
1. reset the hit line’s age to zero
2. promote if the line is unprotected
On a miss
1. demote if candidate’s age > dp

2. if 1 # of protected lines < s and
2 unprotected candidates exist
– insert the incoming line
– evict an unprotected candidate

otherwise→ bypass
(ρ=1-bypass_rate)
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Model Overview

dp

ρs

h

PCPP Enforcer Model
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Model Overview

dp

ρs

h

PCPP Enforcer Model

Model
• Inputs (ρ, dp)

1. On a miss, insert an incoming line into the cache at the probability of ρ
2. Protect the inserted/reused line for at least dp accesses

• Outputs (h, s)
1. What is the average number of protected lines over time (s)?
2. What is the hit rate (h)?

How to characterize the cache access pattern of
an application?
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Reuse Streak
• A dp-protected reuse: an access whose reuse distance ≤ dp

• A dp-protected reuse streak: a sequence of consecutive dp-protected reuses

• Nstreak(l , dp): number of dp-protected reuse streaks whose length is l

Time 1 2 3 4 5 6 Number of Average Reuse

Accesses A A B A A B Reuse Streaks Streak Length

dp = 1 Nstreak(1, 1) = 2 L(1) = 1

dp = 2 Nstreak(3, 2) = 1 L(2) = 3

dp = 3 Nstreak(1, 3) = 1 L(3) = 2
Nstreak(3, 3) = 1
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Reuse Streak
• A dp-protected reuse: an access whose reuse distance ≤ dp

• A dp-protected reuse streak: a sequence of consecutive dp-protected reuses

• Nstreak(l , dp): number of dp-protected reuse streaks whose length is l

Time 1 2 3 4 5 6 Number of Average Reuse

Accesses A A B A A B Reuse Streaks Streak Length

dp = 1 Nstreak(1, 1) = 2 L(1) = 1

dp = 2 Nstreak(3, 2) = 1 L(2) = 3

dp = 3 Nstreak(1, 3) = 1 L(3) = 2
Nstreak(3, 3) = 1

approximate
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Average Reuse Streak Length (cactusADM)
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Hit Rate of a Single Streak
Assumption: the insertions of
incoming lines are independent.

hstreak (l , ρ) = l − E (Nfailures)

= l −
(1 − ρ)

(
1 − (1 − ρ)l

)
ρ

⪆ l + 1 − 1
ρ

(when l → ∞)
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Streak Effect

When ρ ≪ 1, a cache protection policy serves as a “filter” that allows
long reuse streaks to occupy the cache while blocking short ones
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Model
• Hit model h(ρ)

h(ρ) = total hits
total accesses

=
∑∞

l=1 Nstreaks (l) × hstreak (l)
total accesses

⪆ Hmax

(
1 + 1

L
− 1

ρL

)
= Hmax −

Hmax

L

(
1 − ρ

ρ

)
• Size model s(ρ)

s(ρ) = lifetime of all lines
total accesses

= total hits× D + total evictions× dp

total accesses

= total hits
total accesses

× D + total insertions
total accesses

× dp = h(ρ)D + ρ(1 − h(ρ))dp
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s(ρ) = lifetime of all lines
total accesses

= total hits× D + total evictions× dp

total accesses

= total hits
total accesses

× D + total insertions
total accesses

× dp = h(ρ)D + ρ(1 − h(ρ))dp

Model Required Information
Precise full reuse streak pattern

Approximate average reuse streak length (L)
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Model Validation (cactusADM)
Precise Approximate Linear L → ∞ Simulation
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Hit Rate Curve Construction
“Knee”: the point on the approximate
curve that has the maximum distance
from the linear reference line

ρknee(dp) = 1√
L − Hmax

L(1−Hmax )

≈ 1√
L

Talus3: yield a hit rate curve that traces
out the convex hull of a set of points

Apply Talus technique on (0,0), Knee
points, Max points
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3N. Beckmann and D. Sanchez.“Talus: A simple way to remove cliffs in cache performance.” HPCA 2015
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Model Validation (cactusADM)
Precise Approximate Linear L → ∞ Simulation
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Profiling Average Reuse Streak Length

L = total reuses
# of reuse streaks

= total reuses
# of streak starts−# of streak ends

... A ... A ... A ...

dp < Dcur no protected reuse

Dcur ≤ dp < Dlast a new reuse streak
dp ≥ Dlast no new reuse streaks

Dlast Dcur

Detecting the start of a reuse streak
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Implementation

Access
address

1/128
Sampling

lastTS
(12 bits)

lastRD
(8 bits)

hashedTag
(16 bits)

Last Level Cache

PCPP Enforcer

64×64 Shadow Tag Array
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Implementation

Hmax [...], D[...], L[...]

Miss rate curves

Protecting distances (dp)
and Target sizes (s)

Access
address
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Results
LRU DRRIP PDP PCPP Prediction
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PCPP Summary

• The reuse streak concept and the streak effect that explains the
behaviors of a cache protection policy

• A precise and an approximate model to predict the performance of
cache protection policy based on reuse streak information

• A runtime profiler for average reuse steak length and a practical cache
protection policy that produces predictable miss rate curves
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Conclusions

To enable aggressive workload collocation on a chip, shared on-chip
resources needs to be managed in an efficient and effective way.

• Last-level cache
– High-associativity cache partitioning
– Predictable high-performance cache policy

• Off-chip memory bandwidth
– Goal-oriented memory bandwidth allocation

• On-chip network
– Low-cost deadlock avoidance
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Thank You For Listening!

Questions?
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